On the Spatial and Temporal Sampling Errors of Remotely Sensed Precipitation Products
نویسندگان
چکیده
Observation with coarse spatial and temporal sampling can cause large errors in quantification of the amount, intensity, and duration of precipitation events. In this study, the errors resulting from temporal and spatial sampling of precipitation events were quantified and examined using the latest version (V4) of the Global Precipitation Measurement (GPM) mission integrated multi-satellite retrievals for GPM (IMERG), which is available since spring of 2014. Relative mean square error was calculated at 0.1◦ × 0.1◦ every 0.5 h between the degraded (temporally and spatially) and original IMERG products. The temporal and spatial degradation was performed by producing three-hour (T3), six-hour (T6), 0.5◦ × 0.5◦ (S5), and 1.0◦ × 1.0◦ (S10) maps. The results show generally larger errors over land than ocean, especially over mountainous regions. The relative error of T6 is almost 20% larger than T3 over tropical land, but is smaller in higher latitudes. Over land relative error of T6 is larger than S5 across all latitudes, while T6 has larger relative error than S10 poleward of 20◦S–20◦N. Similarly, the relative error of T3 exceeds S5 poleward of 20◦S–20◦N, but does not exceed S10, except in very high latitudes. Similar results are also seen over ocean, but the error ratios are generally less sensitive to seasonal changes. The results also show that the spatial and temporal relative errors are not highly correlated. Overall, lower correlations between the spatial and temporal relative errors are observed over ocean than over land. Quantification of such spatiotemporal effects provides additional insights into evaluation studies, especially when different products are cross-compared at a range of spatiotemporal scales.
منابع مشابه
Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملSpatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملA Novel Method for Quantifying Value in Spaceborne Soil Moisture Retrievals
A novel methodology is introduced for quantifying the added value of remotely sensed soil moisture products for global land surface modeling applications. The approach is based on the assimilation of soil moisture retrievals into a simple surface water balance model driven by satellite-based precipitation products. Filter increments (i.e., discrete additions or subtractions of water suggested b...
متن کاملCharacterization of Uncertainty in Remotely-Sensed Precipitation Estimates
Satellite-derived retrievals of precipitation have increased in availability and improved in quality over the last decade. There are now several satellites in orbit with instruments capable of precipitation retrieval with various degrees of accuracy, spatial resolution and temporal sampling. These retrievals have the advantage of almost full global coverage when compared to surface gauges and g...
متن کاملCapabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations
The importance of satellite datasets as alternative sources of precipitation information has been argued in numerous studies. Future developments in satellite precipitation algorithms as well as utilization of satellite data in operational applications rely on a more in-depth understanding of satellite errors and biases across different spatial and temporal scales. This paper investigates the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017